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I. INTRODUCTION 

There are many classical, nonlinear systems exhibiting some kind of 
chaotic behavior. Examples include the turbulent flow of a fluid, 
usually described by means of the Navier-Stokes equations, and the be­
havior of liquids, gases or antiferromagnets above the critical point, 
among others. 

In this paper, we propose to reexamine and further develop an ap-' 
proach to the description of such systems, originally proposed by 

Martin, Siggia and Rose,l and reformulated by DeDominicis and Peliti. 2 

This approach promises to yield some qualitative insight into problems 
of the kind outlined abovej moreover, if sufficiently developed, it may 
be co~bined with numerical methods in order to increase the accuracy of 
the results or reduce computing time. We use the formulation of ref. 2 
and restrict our attention to autonomous systems. From a qualitative 
point of view, the method consists of the following. One considers a 
system described by a set of deterministic nonlinear equations governing 
the behavior of the dynamical variables. In the approach of refs. 1 and 
2, the system is then perturbed by a random force. It is then shown 
that this theory of a "randomly stirred" system is formally equivalent 
to a quantum field theory: one can define it, for instance, in terms of 
a suitable path integral, and compute fluctuations induced by the random 
stirring force by means of familiar and internally consistent methods. 

However, the approach as described in refs. 1 and 2, is, to a 
certain degree, incomplete from a physical point of view. It is not 
clear that a system has to be randomly stirred in order to become 
chaotic: for example, a fluid flow can apparently become turbulent 
under the influence of some perfectly smooth, non-fluctuating external 
force, such as a constant pressure gradient in a pipe. Although one may 
argue that in a "real" flow there is always some randomness present 
(such as thermal fluctuations in the fluid, roughness of the wall of the 

pipe, etc.), a recent numerical simulation carried out by Deissler3 

seems to indicate that this is not crucial in the development of turbu­
lence and probably in the chaotic behavior of other systems either. 
Intuitively, one would like to "switch off" the random stirring force in 
some smooth manner, and make sure that chaotic behavior persists even if 
the random perturbation is weak. (This, to a certain extent, would 

lp. C. Martin, E.·D. Siggia and H. A. Rose, "Statistical Dynamics of 
Classical Systems," Phys. Rev~, Vol. A8, pp. 423-440, 1973. 

2C. DeDominicis and L. Peliti, "Field-Theory, Renormalization and Criti­
cal Dynamics Above T: Helium, Antlferromagnets and Liquid-Gas 

c 
Systems, " Phys. Rev., Vol. B18, pp. 353-376, 1978. 

3 
R. G. Deissler, "Is Navier-St:okes Turbulence Chaotic?," Phys. Fluids ... , 
Vol. 29, pp. 1453-1457, 1986. 
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justify the conjecture expressed by Martin and DeDominicis4 that at 
least some important properties of a turbulent flow are independent of 
the agitation mechanism.) From the technical point of view, the formal­
ism, as it stands, does not readily lend itself to the development of a 
systematic loop expansion around some non-trivial, average solution 
represented by a non-trivial saddle point of the path integral, unless 
the stirring force is kept nonzero, since all propagators are propor­
tional to the correlation function of the stirring force. 

Quite clearly, this calls for a more careful examination of the 
role played by a random, typically Gaussian, stirring force in the 
theory of nonlinear systems in which we are interested. It turns out 
that, within the framework of the formalism created by Martin, Siggia, 
Rose, DeDominicis, and Peliti (MSRDP), loco cit., one can associate a 
Hamiltonian system with every autonomous, but possibly dissipative 
system stirred by a random force. That Hamiltonian system becomes 
singular, in a sense to be specified later, if from the outset, the 
stirring force is set equal to zero. In some simple and physically 
interesting cases, typically, Gaussian stirring of equal strength at 
every frequency and wave number, the functional integration over 
canonical momenta can be carried out in a closed form. This establishes 
a relationship between the Hamiltonian and Lagrangian forms of the path 
integral, as long as the stirring force is not exactly zero. 

The paper is organized as foilows. In the next Section we consider 
some general properties of systems described by the class of equations, 
of the form atx - F(X) = 6f(x,t), where f is a Gaussian stirring force 

and & is a parameter characterizing the strength of its coupling to the 
system of interest, while all dynamical variables are collectively de­
noted by Xi where X is an element of some vector field. We explicitly 
exhibit the correspondence between the MSRDP path integral and a 
Hamiltonian system and derive the Lagrangian form of the path integrHJ 
which is suitable for the development of a systematic approximation 
scheme. In Section 3 the formalism is applied to the turbulent flow of 
a viscous incompress ible fluid. In pat'ticular, we derive the general 
form of the Feynman rules necessary faT' the computation of the non­
Gaussian part of the velocity distribution. In Section 4 this formalism 
is illustrated on a flow which is Poiseuille on the average; in partic­
ular, we compute the two-point velocity correlation function in the 
Gaussian approximation. The results are summarized and discussed in 
Section 5. 

2. GENERAL FORMALISM 

For the sake of completeness, we start with a brief review of the 
procedure of DeDoininicis and Peliti (ref. 2). Consider a "classJcal" 
system described by an equation of the type 

4p . C. Martin and C. DeDominicis, "The Long Distance Behavior of 
Randomly Stirred Fluids," Prog. Theor. Phys. Supp., No. 64, pp. 108-
123, 1978. 
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(2.1) 

where f is a Gaussian random force and ~ is a numerical parameter, which 
ultimately will be made vanishingly small. The correlation operator of 
f is denoted by K and the scalar product is then denoted by the symbol 
< >. 

The principal result of DeDominicis and Peliti is that the charac­
teristic functional of the stochastic process defined in the preceding 
can be written in the form: 

(2.2) 

Here, DX and Df stand for an appropriately normalized functional measure 
and j is an arbitrary source function. The cumulants of the distribu-

tion are generated by the functional W[j] = i-1lnG[j]. In what follows, 
we are mainly interested in the cumulants of any given distribution. 
Hence, it is convenient to define an equivalence class of functionals of 
the source j by calling two functionals equivalent if their ratio is 
independent of the source j. Following the tradition hf quantum field 
theory, members of this equivalence class are identified by the conven­
tional equality sign (;). With this, we now have, using a Fourier 
representation of the delta functional, 

Integtation over the stirring force can be readily performed. 
result is: 

J 
i<j X> G[j] = DX DP e ' Det(d t -6F/6X)exp i{<P,dtX> - H}, 

(2.3) 

The 

(2.4) 

where H = <P,F> + i6 2<P,KP>/2. (We note that the correlation operator 
is, by necessity, a Hermitean one, thus, <f,Kg> = <Kf,g> for any admis­
sible pair of vectors f and g.) In what follows, one can set the cor­
relation operator, K, proportional to the unit operator without any sub­
stantial loss of generality. (Indeed, such a choice of K is desirable 
from an intuitive point of view: one "stirs" the system by a white 
noise, i.e., the correlation function of the stirring force is propor­
tional to a(t-tl) and the stirring is of the same strength at every wave 
number.) With this simplification, let us now take a look at the func­
tional integral, eq. (2.4). Quite obviously, this integral is of the 

canonical form (see e.g., Itzykson and Zuber5 ). One is integrating over 
the phase space of variables X,P, with a weight exp i{<P,dtX> - H}. 

Clearly, the quantity in curly brackets can be identified with the 

5C. Itzykson and J. B. Zuber, "Functional Methods," Quantum Field 
Theory, McGraw-Hill, New York, 1980, Chapter IX, pp. 425-474. 
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canonical form of the action governing the fluctuations, while H plays 
the role of the Hamiltonian. The important point to notice is that if 
one insisted on discarding the coupling between the stirring and the 
system under consideration, the latter would become a singular Hamilton­
ian system (in the sense of classical mechanics): one cannot pass free­
ly between the Hamiltonian and Lagrangian formulations of the problem at 

hand since the second derivative operator, o2H!oP6P, is singular (in 
this case, identically zero) when ~ = O. (Given the fact that the inte­
gration over the canonical momenta, P, is a Gaussian one, reflecting the 
Gaussian nature of the stirring, there is a one-·to-one correspondence 
between the analysis of the "classical" Hamiltonian system defined 
implicitly by eqs. (2.3) and (2.4) and the actual system under consider­
ation. ) 

Let us now accept a unit correlation operator of the stirring 
force. One can then readily perform the integration over the canonical 
momenta, thus arriving at the "Lagrangian" form of the functional inte­
gral, viz., 

G[j] = DXe J, Det(ot-8F!8X)exp-~ 1!2«otX- F),«\X-F». J 
i<' x> -2 (2.5) 

In general, it is possible to exponentiate the functional determinant 
appearing in eqs. (2.4) and (2.5) by introducing the usual Fadeev-Popov 
ghost fields, cf., Itzykson and zuber, loco cit.. We denote the ghost 
fields by u and v; then using the standard expression of a functional 
determinant in terms of an integral over Grassmann fields, we get the 
final expression for the generating functional: 

[j] J D i<j ,X> { -2! ( ) ( ) r} G :: DX Du v e exp - ~ 1 2< d tX-F , d tX-F > - , (2.6) 

where r stands for the ghost part of the action, viz., 

r = <u, (Ot - 5F!5X)v>. (2.7) 

The expression of the characteristic functional obtained in eq. (2.6) 
and (2.7) has the advantage that it allows one to perform a consistent 

loop expansion (in powers of ~2) in a standard fashion, cf. Itzykson and 

Zuber, loco cit., Ch. 6. In essence, ~2 plays the same role in this 
formalism as Planck's constant does in quantum field theory. It fol­
lows that it is impossible to put 6 = 0 from the outset: this is a 
singular limit in the same sense as the limit h ~ 0 is in quantum 
theory. In a general system all one can do is to rescale the var,iables 
of the functional 'integration in a manner analogous to a quantum field 
theory with a single coup] ing constant; in this way, a "small ~" expan­
sion can be converted to a "weak nonlinearity" expansion. A practically 
important exception to this scaling argument is given by a scale invar­
iant system, notably the hydrodynamics of a viscous Incompressible 
fluid. In this case, a scale transformation can be chosen such that the 
small parameter & is altogether eliminated from the theory. This case 
will be studied in the next Section. 
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We end these general considerations by exhibiting a conservation 
law intrinsic to the general formalism, provided the system is autono­
mous, i.e., F is independent of t. Given any autonomous Lagrangian 
system, the Legendre transform of the Lagrangian with respect to the 
time derivatives of the dynamical variables (the "energy") is time inde­
pendent. A straightforward application of this theorem to the Lagrangi­
an appearing in eq. (2.5), viz., L = 1/2«dt X-F),(d t X-F» leads to the 

conservation of the quasi-energy 

Unfortunately, the quasi-energy is not a positive functional. However, 
just like the Lagrangian, Q vanishes for an unperturbed (6 = 0) solu­
tion of the field equations. Therefore, its magnitude characterizes the 
randomness of the response of the system under the influence of arbi­
trarily small random perturbations. 

3. TURBULENCE IN AN INCOMPRESSIBLE VISCOUS PLUm 

We now apply the general formalism outlined in the previous section 
to the turbulent flow of a viscous, incompressible flui~. The equations 
governing the flow are: 

i 
C).V 

1 
0, 

i E.f , (3.1) 

(3.2) 

i . 
where v stand for the components of the velocity, p is the pressure and 
f is a perturbing Gaussian random force with unit correlation operator. 
In order to apply the formalism outlined in Sec. 2, we introduce the 
momentum canonically conjugate to the velocity field, w.. Then, using 

1 

eq. (2.4), the action entering the expression of the characteristic 
functional reads: 

3' 2 i A = Jd xdt{w.N1[v] - 1/2 6 w w.}. 
1 1 

(3.3) 

One readily convinces oneself that the part of the action linear in Wi 

is invariant under the following scale transformation: 

1/2 -1/2 -1 -1 
t = At'; x =: A X'; v'" A v'; p =: A p'; w = A w', (3.4) 

where A is an arbitrary positive scale factor and v, w stand for the 
magnitudes of the velocity and momentum vectors. (This is just the 
usual scaling law of the Navier-Stokes equations; in particular, the 
Reynolds number is an invariant of the transformation.) Therefore, upon 

choosing A = E,-4, the coefficient of the term quadratic in the canonical 
momentum becomes unity: the small parameter djsappeared from the theory 
altogether. (More precisely, it was shifted into the boundary condi-
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tions, which, however, can be adjusted accordingly.) We can now go 
directly to eq. (2.5); the "Lagrangian" form of the action reads: 

3 i A = 1/2 Jd xdt N [v] N. [v]. 
1 

(3.5) 

This action has to be supplemented by the ghost contribution, r, 
cf., eqs. (2.6) and (2.7). On denoting the ghost fields by ~ and q, 
respectively, we have: 

r (3.6) 

In order to develop a systematic loop expansion to the functional inte­
gral with this action, we need to determine an average flow which is a 

i ; i 
solution. V , of the unperturbed Navier-·Stokes equations. N [V] = 0 and 

of the subsidiary condition, a.vi = O. The solution to these equations, 
1 

together with ~ = q = 0 (which is the only saddle point of r), determine 
a saddle point of the integrand in the functional integral expression of 
the generating functional. Let us suppose that such a solution has been 
found. We can then expand the action around the saddle point noting 

that the fluctuations, ui ~ vi - vi, have to be divergence-free. In 

order to satisfy the transversality condition, T ~ a.u i 
= 0, one has to 

. 1 

insert the standard Fadeev-Popov factor, 5 (T)' Det(5T/5u), under the 
functional integral. The determinant is, however, independent of the 
integration variables, and thus no ghost has to be introduced for this 
constraint. It is further a straightforward matter to show that the 
effect of the delta functional is merely to project out the transverse 

. -2 . 
part of the propagator, by means of the projector, T .. :=: 0 .. - v a.a .. 

IJ IJ 1 J 

iii i After inserting v = V + u into the action and using N [V] = 0, 
the action splits up as follows: 

(3.7) 

where the subscripts 0 and 1 stand for the quadratic ("kinetic") and 
higher order (" interaction") parts of the action descd bing the fluctua­
tions, respectively. The general expression of the various pieces can 
be best described as follows. Introduce the following quantities: 

1. 
1 

We then have 

2 r r ( () t ·-!.IV + Va) u . + V. u 
r 1 l,r 

(3.8) 
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3 i k irk 
A1[U] = 1/2idt d x{2(1 u u. k) + (u uk .)(u u ,r)}, 

1, ,I 

(3.9) 

From here one immediately reads off the general Feynman rules needed for 
the computation of the non-Gaussian part of the distribution. In par-

-1 
ticular, the ghost propagator is given by L whereas the propagator of 

the velocity fluctuations is given by (Lt L)-l. Clearly, in order to 
proceed any further, the average flow has to be specified. In the next 
section, this procedure is illustrated for the important example of a 
flow which is. on the average, Poiseuille. 

4. FLUCTUATIONS IN A FLOW BETWEEN PARALLEL PLANES 

We consider a flow taking place between two parallel planes; the 
pressure gradient is stationary and homogeneous; its direction is paral­
lel to the planes. We assume that the average flQw is given by 
Poiseuille's solution of the Navier-Stokes equations, viz., in a 
suitably chosen Cartesian system of coordinates, the nonvanishing 
component of the average velocity is 

where U is related to the pressure gradient and kinematic viscosity in a 
well-known way, and "a" stands for the half-distance between the planes 
confining the flow. The coordinate axes x and z are perpendicular and 
parallel to the planes, respectively, whereas the y-axis is perpendic­
ular to the (x,z) plane. Our objective is to work out the expressjon 
for the action with this average flow, and then carry out the inversion 

of Land LtL in order to obtain the Feynman rules which ultimately de­
termine the correlation functions. Even with this simple average flow, 
this is a rather tedious task and the result cannot be obtained in a 
closed form. In order to proceed, we rescale all quantities in order to 
measure them in their natural units. To this end, the unit of length is 
chosen to be a, the unit of time is the characteristic advection time, 
a/U, and velocities are measured in units of U. In addition, the fluid 

* is characterized by an intrinsic diffusion velocity, u = ~/a. The 
* Reynolds number is defined to be R ~ U/u. We can choose the units in 

which the correlation operator of the stirring is measured such that it 

is proportional to (u*)3a2. In this way, if we go over to dimensionless 
quantities, the quadratic part of the action, Ao' will be proportional 

11 



3 to R. In these units the average flow is obviously given 

2 1/2(1-x ). Next, define, as in the preceding section, 1. = 
1 

uk is the velocity fluctuation in its natural units and Lik is the 

operator (again using natural units): 

In this way we get, 

where 

(4.2) 

(4.3) 

It is now obvious that at large Reynolds numbers the action is propor-­

tional to the large number, R3. In the same way as in quantum field 
theory the semiclassical limit (h ~ 0) is obtained by rescaling the 
fields with an appropriate power of Planck's constant; here we remove 

. i -3/2 i 
the large number in front of AO by rescaling, u ~ R ,u. In this 

way, the quadratic part of the action becomes 0(1) in R, whereas the 
non-Gaussian part carries negative powers of R; thus it is relatively 
unimportant for large Reynolds numbers. (In fact,. one can define a 
systematic expansion in inverse powers of R; here we restrict ourselves 
to the leading term of that expansion.) It is also easily seen that in 
the leading approximation to the distribution, the ghost fields decouple 
from the velocity fluctuations. Thus, in the leading approximation, one 
has a Gaussian distribution of fluctuations for R » 1. In order to 
compute the correlation function of the fluctuations, we now have to 

invert the operator LtL. This is best done in a mixed representation: 
we Fourier transform in the variables t, y, z, denoting the conjugate 
variables by w, k k ,respectively. One is tempted to omit the term of 

y Z 

O(R-1) in the expression of L altogether. However, in this way, the 
viscous effects would be totally neglected. Instead, at least for the 

--1 2 2 
purpose of illustration, we omit the term R - d /dx from eq. (4.2), thus 

making the distribution independent-valued6 in x. This is expected to 
be a reasonably good zeroth approximation outside the boundary layer 

which, in natural units, is approximately of thickness R- 1/ 2 . In this 
approximation, the computation of the velocity correlation function (the 
propagator of the fluctuation) is a straightforward, although somewhat 
tedious, task: the technical complication arises from the application 

t - 1 of the nonlocal projector, T .. , on (L L) . If we ar'e to remain in the 
1J 

leading approximation, however, we do not need the full propagator. The 
correlation function of vorticities is easier to compute: one just has 

61 . M. Gel'fand and N.Va. Vilenkin, Generalized Functions, Vo]. 4, 
Academic Press, New York, 1964, Chapter III. 
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t -1 
to take the curl of a matrix element of the operator (L L) in both of 
its variables. (Obviously, for an incompressible fluid, the vorticity 
correlation function contains the same physical information as the full 
correlation function.) Denoting the components of the vorticity cor­
relation tensor by Uik , the result of a straightforward computation can 

be described as follows. 

i) From the reality and symmetry of the vorticity correlation 
tensor in coordinate space, one readily derives a Hermiticity relation­
ship in the mixed representation used here, viz., 

* U i j (-k , -k ,-(,,); x, X I ). = U .. (k ,k ,e..>; x I , x) . 
y Z J1 Y Z 

(4.4) 

ii) Taking this into account, we list a set of independent vorti­
ci ty correlatlon functions as follows. 

Let us define the quantity, B 

Then, 

it xx -1 8 /-
2 

[k
2 

(1 
Y 

2 

2 x 
+ --) 

IBI2 

2 

+ 

n yy 
~(\BI-2(1 
ai 

x 
+ ~(x 

IBI 

k
2

]6 (x z 
~ x'), 

- x ')} 

k 
2 
z ---cS(x--x ' ), 

IBI2 

n zz 
a2 -2 2 2 

_. -[/ B I 5 (x -- X I )] -. k I B r- 5 (x -- X I ) , 

ax2 y 

n yx 
d 2 2 B 

- k {i -[\ B \-- (1 + ~2)15 (x - X I )] + xk -- 15 (x - X I ) } , 

y ax IBI z 1BI4 

n zx 

U zy 

- ik ~x[IBI-20(X - x')] -t xk 2 
_B_ o(x -- x'), 

Z u y /B/4 

k {k B-25(X -. x ') + i ~[_B_ x5(x - x ')]}. 
y z dx 1 BI4 

(4.5) 

Not surprisingly, the correlation functions are proportional to 6-func­
tions and their derivatives in x: this is to be expected for indepen­
dent-valued distributions, cf., Gel'fand and ViJenkin, loco cit. 
Accordingly, one has to fold the correlation functions quoted with the 
efficiency functions of the detectors in order to get physically mean­
ingful expressions. 
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5. DISCUSSION 

The formalism developed in this paper allows one to develop a 
systematic approximation pr6cedure to the theory of stochastic systems 
originally developed in refs. 1 and 2. In particular, as it was demon­
strated in the preceding section, one can obtain useful analytical 
results in the form of an asymptotic expansion in inverse powers of R 
in, at least some, turbulent flows. However, the usefulness of this 
technique goes beyond the large R expansion. In its present form, the 
formalism appears to be much more amenable to the application of 
standard, non-perturbative techniques extensively used in quantum field 
theory, such as a renormalization group analysis of the various correla­
tion functions. The technical reason for this is that the present, 
Lagrangian formulation of the functional integral is better adapted to 
the application of such techniques than the essentially canonical 
formulation in refs. land. 2. In those papers, one was forced to use 
retarded, rather than Feynman propagators: this circumstance alone 
rendered the formalism so complicated that an efficient implementation 
of modern techniques ~as virtually impossible. 

In addition, it appears that using the proposed formalism one can 
gain some interesting insights into the theoretical description of 
chaotic behavior in general and the theory of turbulen~e In particular. 

It has been emphasized in the literature7 that chaotic behavior has many 
features which are similar to phase transitions or dynamical symmetry 
breaking. In this respect, it is particularly ple~sing to notice that a 
consistent statistical description of chaotic phenomena appears to 
require the presence of an arbitrarily weak but norivanishing "disorder­
ing field," just as a consistent theory of dynamical symmetry breaking 

requires the presence of a weak "ordering field."B 

7Hao Bai-Lin, Chaos, World Sc.ientific, Singapore, ]984, Chapter 1. 

8G. Domokos and P. Suranyi, "Spontaneous Symmetry Breaking in Quantum 
Field Theory," §ov. Jour. Nuc. Phys., Vol. 2, pp. 361-367, 1966. 
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